
Wire Federation

version 0.0.4

Wire Swiss GmbH

May 08, 2024

Contents
Wire Federation 1

Federation Achitecture 1

Backends 1

Backend domains 1

Federation Ingress 1

Federator 2

Service components 2

Backend to backend communication 2

Authentication 2

Discovery 3

SRV TTL and Caching 3

Authorization 3

Per-request authorization 4

Example 4

Federation API 5

Qualified Identifiers and Names 5

Federated requests 6

API From Components to Federator 7

API between Federators 7

API From Federator to Components 7

List of Federation APIs exposed by Components 7

Brig 7

Galley 8

Cargohold 9

Example End-to-End Flows 9

User Discovery 9

Conversation Establishment 9

Message Sending 10

Ownership 10

Federated API calls by client API end-point (generated) 10

Wire Federation
Wire Federation aims to allow multiple Wire-server backends to federate with each other: Users on on different
backends are be able to interact with each other as if they are on the the same backend.

Federated backends are be able to identify, discover and authenticate one-another using the domain names under
which they are reachable via the network. To enable federation, administrators of a Wire backend can decide to
either specifically list the backends that they want to federate with, or to allow federation with all Wire backends
reachable from the network. See configure-federation.

Note

The Federation development is work in progress.

Federation Achitecture

Backends
In the following we call a backend the set of servers, databases and DNS configurations that together form one
single Wire Server entity as seen from the outside. It can also be called a Wire “instance” or “server” or “Wire
installation”. Every resource (e.g. users, conversations, assets and teams) exists and is owned by a single backend,
which we can refer to as that resource’s backend.

The communication between federated backends is facilitated by two components in each backend: Federation
Ingress and Federator. The Federation Ingress is, as the name suggests, the ingress point for incoming connections
from other backends, which are then forwarded to the Federator. The Federator forwards requests to internal
components. It also acts as a egress point for requests from internal backend components to other, remote
backends.

Backend domains
Each backend has two domain: an infrastructure domain and a backend domain.

The infrastructure domain is the domain name under which the backend is actually reachable via the network. It is
also the domain name that each backend uses in authenticating itself to other backends.

Similarly, there is the backend domain, which is used to qualify the names and identifiers of users local to an
individual backend in the context of federation.

The distinction between the two domains allows the owner of a backend domain, e.g. example.com, to host their
Wire backend under a different infrastructure domain, e.g. wire.infra.example.com.

Federation Ingress
The Federation Ingress is a Kubernetes ingress and uses nginx as its underlying software.

It is configured with a set of X.509 certificates, which acts as root of trust for the authentication of the infrastructure
domain of remote backends, as well as with a certificate, which it uses to authenticate itself toward other backends.

Its functions are:

• to terminate TLS connections

• to perform mutual Authentication as part of the TLS connection establishment

• to forward requests to the local Federator instance, along with the remote backend’s client certificate

Wire Federation

1

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://nginx.org/en/

Federator
The Federator performs additional authorization checks after receiving federated requests from the Federation
Ingress and acts as egress point for other backend components. It can be configured to use an allow list to authorize
incoming and outgoing connections, and it keeps an X.509 client certificate for the backend’s infrastructure domain
to authenticate itself towards other backends. Additionally, it requires a connection to a DNS resolver to discover
other backends.

When receiving a request from an internal component, the Federator will:

1. If enabled, ensure the target domain is in the allow list,

2. Discover the other backend,

3. Establish a mutually authenticated channel to the other backend using its client certificate,

4. Send the request to the other backend and

5. Forward the response back to the originating component (and eventually to the originating Wire client).

The Federator also implements the authorization logic for incoming requests and acts as intermediary between the
Federation Ingress and the internal components. The Federator will, for incoming requests from remote backends
(forwarded via the local Federation Ingress):

1. Discover the mapping between backend domain claimed by the remote backend and its infra domain,

2. Verify that the discovered infrastructure domain matches the domain in the remote backend’s client certificate,

3. If enabled, ensure that the backend domain of the other backend is in the allow list.

4. Forward requests to other wire-server components.

Service components
Components such as Brig, Galley, Cargohold are responsible for actual business logic and interfacing with
databases and non-federation related external services. See source code documentation. In the context of
federation, their functions include:

• For incoming requests from other backends: per-request authorization

• Outgoing requests to other backends are always sent via a local Federator instance.

For more information of the functionalities provided to remote backends through their Federator, see the federated
API documentation.

Backend to backend communication
We require communication between the Federator of one (sending) backend and the Federation Ingress of another
(receiving) backend to be both mutually authenticated and authorized. More specifically, both backends need to
ensure the following:

• Authentication

Determine the identity (infrastructure domain name) of the other backend.

• Discovery

Ensure that the other backend is authorized to represent the backend domain claimed by the other backend.

• Authorization

Ensure that this backend is authorized to federate with the other backend.

Authentication
Authentication between Wire backends is achieved using the mutual authentication feature of TLS as defined in RFC
8556.

In particular, this means that the ingress of each backend needs to be provisioned with one or more trusted root
certificates to authenticate certificates provided by other backends when accepting incoming connections.

Backend to backend communication

2

https://github.com/wireapp/wire-server
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446

Conversely, every Federator needs to be provisioned with a client certificate which it uses to authenticate itself
towards other backends.

Note that the client certificate is required to be issued with the backend’s infrastructure domain as one of the subject
alternative names (SAN), which is defined in RFC 5280.

See federation-certificate-setup for technical instructions.

If a receiving backend fails to authenticate the client certificate, it fails the request with an
AuthenticationFailure error.

Discovery
The discovery process allows a backend to determine the infrastructure domain of a given backend domain.

This step is necessary in two scenarios:

• A backend would like to establish a connection to another backend that it only knows the backend domain of.
This is the case, for example, when a user of a local backend searches for a qualified username, which only
includes the backend domain of that user’s backend.

• When receiving a message from another backend that authenticates with a given infrastructure domain and
claims to represent a given backend domain, a backend would like to ensure the backend domain owner
authorized the owner of the infrastructure domain to run their Wire backend.

To make discovery possible, any party hosting a Wire backend has to announce the infrastructure domain via a DNS
SRV record as defined in RFC 2782 with service = wire-server-federator, proto = tcp and with name
pointing to the backend’s domain and target to the backend’s infrastructure domain.

For example, Company A with backend domain company-a.com and infrastructure domain wire.company-a.com
could publish

_wire-server-federator._tcp.company-a.com. 600 IN SRV 10 5 443 federator.wire.company-a.com.

A backend can then be discovered, given its domain, by issuing a DNS query for the SRV record specifying the
wire-server-federator service.

In case this process fails the Federator fails to forward the request with a DiscoveryFailure error.

SRV TTL and Caching

After retrieving the SRV record for a given domain, the local backend caches the backend domain <–> infrastructure
domain mapping for the duration indicated in the TTL field of the record.

Due to this caching behavior, the TTL value of the SRV record dictates at which intervals remote backends will
refresh their mapping of the local backend’s backend domain to infrastructure domain. As a consequence a value in
the order of magnitude of 24 hours will reduce the amount of overhead for remote backends.

On the other hand in the setup phase of a backend, or when a change of infrastructure domain is required, a TTL
value in the magnitude of a few minutes allows remote backends to recover more quickly from a change of the
infrastructure domain.

Authorization
After an incoming connection is authenticated the backend authorizes the request. It does so by verifying that the
backend domain of the sender is contained in the domain allow list.

Since the request is authenticated only by the infrastructure domain the sending backend is required to add its
backend domain as a Wire-Origin-Domain header to the request. The receiving backend follows the process
described in Discovery and verifies that the discovered infrastructure domain for the backend domain indicated in the
Wire-Origin-Domain header is one of the Subject Alternative Names contained in the client certificate used to
sign the request. If this is not the case, the receiving backend fails the request with a ValidationError.

Backend to backend communication

3

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc2782

Per-request authorization

In addition to the general authorization step that is performed by the federator when a new, mutually authenticated
TLS connection is established, the component processing the request performs an additional, per-request
authorization step.

How this step is performed depends on the API endpoint, the contents of the request and the context in which it is
made.

See the documentation of the individual API endpoints for details.

Example
The following is an example for the message and information flow between a backend with backend domain a.com
and infrastructure domain infra.a.com and another backend with backend domain b.com and infrastructure
domain infra.b.com.

The content and format of the message is meant to be representative. For the definitions of the actual payloads,
please see the federation API section.

The scenario is that the brig at infra.a.com has received a user search request from Alice, one of its clients.

Backend to backend communication

4

Federation API

Qualified Identifiers and Names
The federated architecture is reflected in the structure of the various identifiers and names used in the API.
Identifiers, such as user ids, are unique within the context of a backend. They are made unique within the context of
all federating backend by combining them with the backend domain.

Federation API

5

For example a user with user id d389b370-5f7d-4efd-9f9a-8d525540ad93 on backend b.example.com has
the qualified user id d389b370-5f7d-4efd-9f9a-8d525540ad93@b.example.com. In API request bodies
qualified identities are encoded as objects, e.g.

{
 "user": {
 "id": "d389b370-5f7d-4efd-9f9a-8d525540ad93",
 "domain": "b.example.com"
 }
 ...
}

In API path segments qualified identities are encoded with the domain first, e.g.

POST /connections/b.example.com/d389b370-5f7d-4efd-9f9a-8d525540ad93

to send a connection request to a user.

Any identifier on a backend can be qualified:

• conversation ids

• team ids

• client ids

• user ids

• user handles, e.g. local handle @alice is displayed as @alice@b.example.com in federating users’ devices

User profile names (e.g. “Alice”) which are not unique on the user’s backend, can be changed by the user at any time
and are not qualified.

Federated requests
Every federated API request is made by a service component (e.g. brig, galley, cargohold) in one backend and
responded to by a service component in the other backend. The Federators of the backends are relaying the request
between the components across backends . The components talk to each other via the Federator in the originating
domain and Federator Ingress in the receiving domain (for details see Backend to backend communication).

Federation API

6

Federators relaying a request between components. See Example to see the discovery, authentication and
authorization steps that are omitted from this figure.

API From Components to Federator

When making the call to the Federator, the components use HTTP2. They call the Federator’s Outward service,
which accepts POST requests with path /rpc/:domain/:component/:rpc. Such a request will be forwarded to
the remote Federator with the given backend domain, and converted to the appropriate request of its Inward
service.

API between Federators

The layer between Federator acts as an envelope for communication between other components of wire server. The
Inward service of Federator is an HTTP2 server which is responsible for accepting external requests coming from
other backends, and forwarding them to the appropriate component (currently Brig or Galley).

Federator inspects the header of an incoming requests, performs discovery and authentication, as described in
Backend to backend communication, then forwards the request as-is by repackaging its body into an HTTP request
for the target component.

The Inward service accepts only POST requests with a path of the form /federation/:component/:rpc, where
:component is the lowercase name of the target component (i.e. brig or galley), and :rpc is the name of the
federation RPC to invoke. The arguments of the RPC are contained the body, which is assumed to be of content
type application/json.

See API From Federator to Components for more details on RPCs and their paths.

API From Federator to Components

The components expose a REST API over HTTP to be consumed by the Federator. All the paths start with
/federation. When a Federator receives a POST request to /federation/brig/get-user-by-handle, it
connects to a local Brig and forwards the request to it after changing its path to
/federation/get-user-by-handle.

The /federation prefix is kept in the path to allow the component to distinguish federated requests from requests
by clients or other local components.

If this request succeeds, the response is directly used as a response for the original call to the Inward service.
Otherwise, a response with a 5xx status code is returned, with a body containing a description of the error that has
occurred.

Note that the name of the RPC (get-user-by-handle in the above example) is required to be a single path
segment consisting of only ASCII characters within a restricted set. This prevents path-traversal attacks such as
attempting to access /federation/../users/by-handle.

List of Federation APIs exposed by Components
Each component of the backend provides an API towards the Federator for access by other backends.

Note

This reflects status of API endpoints as of 2023-01-10. For latest APIs please refer to the corresponding source
code linked in the individual section.

Brig

In its current state, the primary purpose of the Brig API is to allow users of remote backends to create conversations
with the local users of the backend.

• get-user-by-handle: Given a handle, return the user profile corresponding to that handle.

Federation API

7

• get-users-by-ids: Given a list of user ids, return the list of corresponding user profiles.

• claim-prekey: Given a user id and a client id, return a Proteus pre-key belonging to that user.

• claim-prekey-bundle: Given a user id, return a prekey for each of the user’s clients.

• claim-multi-prekey-bundle: Given a list of user ids, return prekeys of their respective clients.

• search-users: Given a term, search the user database for matches w.r.t. that term.

• get-user-clients: Given a list of user ids, return the lists of clients of each of the users.

• get-user-clients: Given a list of user ids, return a list of all their clients with public information

• send-connection-action: Make and also respond to user connection requests

• on-user-deleted-connections: Notify users that are connected to remote user about that user’s deletion

• get-mls-clients: Request all MLS-capable clients for a given user

• claim-key-packages: Claim a previously-uploaded KeyPackage of a remote user. User for adding users to
MLS conversations.

See the brig source code for the current list of federated endpoints of Brig, as well as their precise inputs and
outputs.

Galley

Each backend keeps a record of the conversations that each of its members is a part of. The purpose of the Galley
API is to allow backends to synchronize the state of the conversations of their members.

• get-conversations: Given a qualified user id and a list of conversation ids, return the details of the
conversations. This allows a remote backend to query conversation metadata of their local user from this
backend. To avoid metadata leaks, the backend will check that the domain of the given user corresponds to the
domain of the backend sending the request.

• get-sub-conversation: Get a MLS subconversation

• leave-conversation: Given a remote user and a conversation id, remove the the remote user from the
(local) conversation.

• mls-welcome: Send MLS welcome message to a new user owned by the called backend

• on-client-removed: Inform called backend that a client of a user has been deleted

• on-conversation-created: Given a name and a list of conversation members, create a conversation
locally. This is used to inform another backend of a new conversation that involves their local user(s).

• on-conversation-updated: Given a qualified user id and a qualified conversation id, update the
conversation details locally with the other data provided. This is used to alert remote backend of updates in the
conversation metadata of conversations in which at least one of their local users is involved.

• on-message-sent: Given a remote message and a conversation id, propagate a message to local users. This
is used whenever there is a remote user in a conversation (see end-to-end flows).

• on-mls-message-sent: Receive a MLS message that originates in the calling backend

• update-typing-indicator: Used by the calling backend (that does not own the conversation) to inform the
backend about a change of the typing indicator status of one of its users

• on-typing-indicator-updated: Used by the calling backend (that owns a conversation) to inform the
called backend about a change of the typing indicator status of remote user

• on-user-deleted-conversations: When a user on calling backend this request is made for all
conversations on the called backend was part of

• query-group-info: Query the MLS public group state

• send-message: Given a sender and a raw message request, send a message to a conversation owned by
another backend. This is used when the user sending a message is not on the same backend as the
conversation the message is sent in.

• send-mls-commit-bundle: Send a MLS commit bundle to backend that owns the conversation

Federation API

8

https://github.com/wireapp/wire-server/blob/master/libs/wire-api-federation/src/Wire/API/Federation/API/Brig.hs

• send-mls-message: Send MLS message to backend that owns the conversation

• update-conversation: Calling backend requests a conversation action on the called backend which owns
the conversation

See the galley source code for the current list of federated endpoints of Galley, as well as their precise inputs and
outputs.

Cargohold

• get-asset: Check if asset owned by called backend is available to calling backend

• stream-asset: Stream asset owned by the called backend

See the cargohold source code for the current list of federated endpoints of the Cargohold, as well as their precise
inputs and outputs.

Example End-to-End Flows
In the following the interactions between Federator and Federation Ingress components of the backends involved are
omitted for simplicity. Also the backend domain and infrastructure domain are assumed the same.

Additionally we assume that the backend domain and the infrastructure domain of the respective backends involved
are the same and each domain identifies a distinct backend.

User Discovery

In this flow, the user Alice at a.example.com tries to search for user Bob at b.example.com.

1. User Alice enters the qualified user name of the target user Bob : @bob@b.example.com into the search field
of their Wire client.

2. The client issues a query to /search/contacts of the Brig searching for Bob at b.example.com.

3. The Brig in Alice’s backend asks its local Federator to query the search-users endpoint in Bob’s backend.

4. Alice’s Federator queries Bob’s Brig via Bob’s Federation Ingress and Federator as requested.

5. Bob’s Brig replies with Bob’s user name and qualified handle, the response goes through Bob’s Federator and
Federation Ingress, as well as Alice’s Federator before it reaches A’s Brig.

6. Alice’s Brig forwards that information to A’s client.

Conversation Establishment

After having discovered user Bob at b.example.com, user Alice at a.example.com wants to establish a conversation
with Bob.

1. From the search results of a user discovery process, Alice chooses to create a conversation with Bob.

2. Alice’s client issues a /users/b.example.com/<bobs-user-id>/prekeys query to Alice’s Brig.

3. Alice’s Brig asks its Federator to query the claim-prekey-bundle endpoint of Bob’s backend using Bob’s
user id.

4. Bob’s Federation Ingress forwards the query to the Federator, who in turn forwards it to the local Brig.

5. Bob’s Brig replies with a prekey bundle for each of Bob’s clients, which is forwarded to Alice’s Brig via Bob’s
Federator and Federation Ingress, as well as Alice’s Federator.

6. Alice’s Brig forwards that information to A’s client.

7. Alice’s client queries the /conversations endpoint of its Galley using Bob’s user id.

8. Alice’s Galley creates the conversation locally and queries the on-conversation-created endpoint of
Bob’s Galley (again via its local Federator, as well as Bob’s Federation Ingress and Federator) to inform it about
the new conversation, including the conversation metadata in the request.

9. Bob’s Galley registers the conversation locally and confirms the query.

Federation API

9

https://github.com/wireapp/wire-server/blob/master/libs/wire-api-federation/src/Wire/API/Federation/API/Galley.hs
https://github.com/wireapp/wire-server/blob/master/libs/wire-api-federation/src/Wire/API/Federation/API/Cargohold.hs

10
.

Bob’s Galley notifies Bob’s client of the creation of the conversation.

Message Sending

Having established a conversation with user Bob at b.example.com, user Alice at a.example.com wants to send a
message to user Bob.

1. In a conversation <conv-id-1>@a.example.com on Alice’s backend with users Alice and Bob, Alice sends a
message by using the /conversations/a.example.com/<conv-id-1>/proteus/messages endpoint
on Alice’s Galley.

2. Alice’s Galley checks if A included all necessary user devices in their request. For that it makes a
get-user-clients request to Bob’s Galley. Alice’s Galley checks that the returned list of clients matches the
list of clients the message was encrypted for.

3. Alice’s Galley sends the message to all clients in the conversation that are part of Alice’s backend.

4. Alice’s Galley queries the on-message-sent endpoint on Bob’s Galley via its Federator and Bob’s Federation
Ingress and Federator.

5. Bob’s Galley will propagate the message to all local clients involved in the conversation.

Ownership
Wire uses the concept of ownership as a guiding principle in the design of Federation. Every resource, e.g. user,
conversation, asset, is owned by the backend on which it was created.

A backend that owns a resource is the source of truth for it. For example, for users this means that information about
user Alice which is owned by backend A is stored only on backend A. If any federating backend needs information
about the user Alice, e.g. the profile information, it needs to request that information from A.

In some cases backends locally store partial information of resources they don’t own. For example a backend stores
a reference to any remotely-owned conversation any of its users is participating in. However, to get the full list of all
participants of a remote conversation, the owning backend needs to be queried.

Ownership is reflected in the naming convention of federation RPCs. Any rpc named with prefix on- is always
invoked by the backend that owns the resource to inform federating backends. For example, if a user leaves a
remote conversation its backend would call the leave-conversation rpc on the remote conversation. The remote
backend would remove the user and inform all other federating backends that participate in that conversation of this
change by calling their on-conversation-updated rpc.

Federated API calls by client API end-point (generated)
Updated manually using using the fedcalls tool; last change: 2023-01-16.

This is most likely only interesting for backend developers.

This graph and csv file describe which public (client) API end-points trigger calls to which end-points at backends
federating with the one that is called. The data is correct by construction (see the fedcalls tool for more details).

The target can only be understood in the context of the backend code base. It is described by component
(sub-directory in /services) and end-point name (use grep to find it).

links:

• dot

• png

• csv

Federated API calls by client API end-point (generated)

10

https://github.com/wireapp/wire-server/blob/8760b4978ccb039b229d458b7a08136a05e12ff9/tools/fedcalls/README.md
https://github.com/wireapp/wire-server/blob/8760b4978ccb039b229d458b7a08136a05e12ff9/tools/fedcalls/README.md
https://github.com/wireapp/wire-server/

Federated API calls by client API end-point (generated)

11

	Wire Federation
	Federation Achitecture
	Backends
	Backend domains
	Federation Ingress
	Federator
	Service components

	Backend to backend communication
	Authentication
	Discovery
	SRV TTL and Caching

	Authorization
	Per-request authorization

	Example

	Federation API
	Qualified Identifiers and Names
	Federated requests
	API From Components to Federator
	API between Federators
	API From Federator to Components

	List of Federation APIs exposed by Components
	Brig
	Galley
	Cargohold

	Example End-to-End Flows
	User Discovery
	Conversation Establishment
	Message Sending

	Ownership

	Federated API calls by client API end-point (generated)

